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ABSTRACT

The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were

investigated using a combination of mechanical measurements and microstmctural analysis. The

objectives were to evaluate the contributions of plasticity and damage to the overall inelastic

response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of

room temperature experiments performed on 0-degree and 90-degree systems primarily are

reported in this report. Results of experiments performed on other laminate systems and at high

temperatures will be provided in a forthcoming report.

Inelastic deformation of the 0-degree MMC (fibers parallel to loading direction) was dominated by

plasticity of the matrix. Grain boundaries and reaction-zone cracks were found to be important

sites for dislocation and slip-band nucleation. In contrast to the 0-degree MMC, inelastic

deformation of the 90-degree composite (fibers perpendicular to the loading direction) occurred by

both damage and plasticity. This layup system had a characteristic three-stage deformation

behavior: Stages I, II, and III. Inelastic deformation in Stage II was dominated by damage, in the

form of fiber-matrix debonding and reaction-zone cracks. However, micro-yielding of the matrix

also occurred in Stage II. In Stage HI, plasticity was largely concentrated in intense shear bands

between fibers. These ultimately led to shear crack initiation and failure. The predictions of a

continuum elastic-plastic model were compared with the experimental data. The model was

adequate for predicting the 0-degree response; however, it was inadequate for predicting the 90-

degree response, largely because it neglected damage. The importance of validating constitutive

models using a combination of mechanical measurements and microstructural analysis is pointed

out. The deformation mechanisms, and the likely sequence of events associated with the inelastic

deformation of MMCs, are indicated in this paper.
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1. INTRODUCTION

Metal matrix composites (MMCs) have been the subject of intensive research in recent

years. This stems from their excellent stiffness, strength, and wear properties, particularly

at elevated temperatures.

In designing with MMCs, it is important to understand and model their constitutive

response and failure conditions. Micro-mechanical and finite element method (FEM)

techniques have been used to model the stiffness [Hashin and Rosen 1964, Hashin 1979,

Adams and Doner !967], strength [Kelly and Tyson 1965, Kelly 1972], and inelastic

stress-strain behavior [Hill 1964, Adams 1970, Aboudi 1984, Chamis and Hopkins 1988,

Robinson, Duffy and Ellis 1987, Dvorak and Bahei-El-Din 1982, Pindera and Lin 1989,

Walker, Jordan and Freed 1989, Sun 1989, Nimmer et al. 1990] of MMCs. Except for

Chamis et ai.'s[Chamis and Hopkins 1988] and Nimmer et al.'s [Nimmer et al. 1990]

models, which can account for limited damage, most of the inelastic models assume a priori

that the inelastic deformation response of MMCs is due to plasticity/viscoplasticity of the

matrix. However, composites are prone to damage in the form of debonding,

delamination, void formation and cracking. Such damage also can give rise to non-linear

deformation, requiring that the constitutive response be modeled differendy than plasticity.

Against this background, it is interesting to note that comparatively little has been done in

subjecting the models to rigorous validation testing, to establish whether plasticity or

damage is the dominant mode of deformation, and whether any model is sufficient to

predict the inelastic deformation ofa MMC. Some recent experimental work on a Ti 15-

3/SCS6 composite has been reported by Johnson et a1.[1988] and Lerch and Saltsman

[1991 ]. However, plasticity and damage issues were not adequately addressed, although

both the papers attempted to correlate model predictions with experimental stress-strain

curves. As will be indicated in this paper, our own study shows that agreement between a

model and a MMC's uniaxial stress versus longitudinal strain response is insufficient to

establish whether a model is adequate. In fact, we have found that although a model may

appear to be adequate for predicting stress-versus-longitudinal* strain data for a MMC, it

"Throughout this paper, longitudinal strain implies strain along the tensile axis of
uniaxially loaded specimens, independent of the fiber orientation. The off-axis strains are
those perpendicular to the tensile axis.

r
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can be inadequate for predicting off-axis strains.

The complex structure of MMCs make it imperative that any model realistically take into

account the important deformation mechanisms. Otherwise component design can be non-

conservative. A particularly attractive feature of MMCs is that they are tailor-made

materials, and their structure and processing conditions can be varied over a wide range of

conditions to suit application needs. It is desirable to perform preliminary stress-strain

calculations [Morel, Saravanos and Chamis 1990] to optimize a processing route for

required material properties, provided that the material deformation mechanisms are

properly addressed. Thus, from both design and MMC fabrication viewpoints, there is a

critical need to understand how MMCs deform. This need formed the rationale for the

work described here.

In this investigation, monotonic tension tests were performed on a model MMC material: a

Ti-15V-3Cr-3AI-3Sn (Ti 15-3) weight percent alloy, reinforced with SiC (SCS6) fibers.

Attention was focussed on two laminate configurations: 0-degree system, where all the

fibers are parallel to the loading direction, and the 90-degree system, where all the fibers

are perpendicular to the loading direction. The primary objective was to understand the

mechanisms of monotonic deformation of MMCs; in particular, the morphology and

relative magnitudes of plasticity and damage.

2. EXPERIMENTAL APPROACH

The approach that was taken in this work was to confirm the deformation behavior by a

combination of mechanical experiments and microstructural evaluation. We shall illustrate

this by a simple example.

Consider a 0-degree composite that is loaded uniaxially in the fiber direction, and let it

possess a non-linear deformation response, shown schematically by the region BCD in

Figure 1. Let it also be assumed that the deformation is either by plasticity of the matrix, or

by damage. The latter could be in the form of cracking of fibers, or the matrix, or the fiber-

matrix reaction zone, or debonding at the fiber-matrix interface. The question that is now

posed is whether the inelastic deformation BCD is due to plasticity or damage.
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Onepowerfultestfor distinguishingbetweenplasticityanddamageis to unloadthe

specimenfrom thenonlinearzone,andto observechangesin theMMC stiffness.Thus,if

plasticitywasthedeformationmode,thentheunloadingstiffnesswouldbeidenticalto the
loadingstiffness(unloadingpathCE). Conversely,if_age was dominant, then the

unloading line would pass through the origin (unloading path CA). The practical problem

with this discriminatory test iS that it has not yet been established whether this technique

will work for MMCs, which have a high loading of fibers and which have a high residual

stress field to start with. For example, even if plasticity was dominant, inelastic

deformati0n_o _ _e matrix during Unioading could result ina nonlinear unloading line, thus

making the interPretation Of stiffness changes rather difficult. On the other hand, even if

the dominant deformation mechanism was damage in the form of dispersed fiber cracks and

cracking of the reaction zone, the slope change may not be resolvable experimentally; those

involved in fracture mechanics research are quite familiar with experimental difficulties in

trying to determine small crack extensions from compliance changes in specimens. Fiber

crack-closure effects during unloading, coupled with large changes in the residual stresses

in the fiber and matrix, could make the slope change sufficiently small rendering it

unresolvable.

A second technique that can be used advantageously to distinguish between plasticity and

damage, and which also relies on mechanical measurements, is based on evaluating the

Poisson's contraction of the specimen. The Poisson's ratio of engineering alloys increase

from approximately 0.3 in the elastic stage to approximately 0.5 in the plastic stage of

deformation. Although a 0-degree composite would not show a similar increase when the

matrix became plastic, it is expected that the Poisson's ratio would increase if plasticity was

the dominant mode of deformation. Experimental and analytical verification of this concept

for an elastic-plastic system was demonswated by Hamilton et al. [1971] for a model

concentric cylinder system, loaded along the axis of the cylinders. On the other hand, if

damage occurred in the form of cracks perpendicular to the loading axis, the Poisson's ratio

would decrease. The reason is the cracks would make the material more compliant in the

loading direction, without at the same time having any effect on the stiffness parallel to the

crack plane; the net result is an increase in the Poisson's ratio. "Figure 2 shows

schematically the types of anticipated behavior if inelastic deformation was due to plasticity

and damage. Although this technique has not been utilized in the past, we believe it can be

a powerful tool to distinguish between plasticity and damage of MMCs. The advantage

over the compliance technique is that the Poisson's ratio can be continuously monitored,
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and no intermediate unloadings are necessary.

In addition to the two techniques above, metallurgical evaluation can be used to distinguish

between plasticity and damage. Thus, if plasticity was the inelastic deformation

mechanism, then cracks would not be observed if the specimen was unloaded before

fracture and metallurgically polished. Conversely, if damage occurred, then cracks and

debonds would be observed in the tested specimen. However, this technique may not be a

sufficient test by itself, because even if damage was the dominant deformation mechanism,

residual stresses could close the cracks and make them undetectable. One could then

wrongly interpret the absence of cracks as an indication that inelastic deformation was due

to plasticity.

From a metallurgical standpoint, confmnation of plasticity can come from observation of

dislocation structures by transmission electron microscopy CIEM). Thus, if the matrix of

the deformed MMC shows a dislocation structure different from that of the undefomaed

material, then plasticity is confirmed. The difference in dislocation structure could either be

in the form of dislocation pile-ups, cell structure, or dislocation debris in the deformed

material, as well as differences of dislocation densities. In interpreting TEM micrographs it

must be recognized that TEM samples are obtained from a minute region of the material.

Thus, there is a need to evaluate different regions of the test specimen to conf'lrm that the

dislocation structures are representative of the untested and tested materials.

Some matrix alloys show slip bands when plastically deformed. Under such conditions,

optical microscopy also can be used to confirm plasticity. However, the converse is not

true, in that even if plasticity was dominant, slip bands may not be observed.

Another technique for distinguishing between plasticity and damage is through

micromechanical/FEM modeling. The method is indirect, in that an assumed model, based

either on plasticity or damage, is used to predict the stress-strain response of a MMC, and

the mechanism of deformation is inferred from the model that provides best correlation with

the material's actual mechanical response. However, this approach can provide erroneous

results if used indiscriminately and without adequate validation. A more dependable

approach is to actually observe the MMC deformation mechanisms, and to use the

modeling approach only for further confirming the mechanisms involved.



Table1is asurveyof theabovetechniquesfor evaluatingthematerialdeformation

mechanisms.Althoughthelist isby nomeanscomplete,Table1containsmanyof the

importantcharacteristicsof plasticityanddamage.Thecentralpointis thatthedeformation
mechanismmustbeconfirmedby acombinationof techniques,ratherthanrelyingonone

techniquealone.Whenbothplasticityanddamageareoperative,thereferenceTable1can

beutilized for identifyingandquantifyingtherelativemagnitudesof eachdeformation
mechanism.

Themechanismsof deformationareanticipatedto bedependenton theply-layup.

However,thetypeof layupwouldnotalterSignificantlythewayplasticityanddamageare

manifested,theformerbeingassociatedwith slip bandsandchangeddislocationdensities,
andthelatterbeingassociatedwithcracksanddebonding.Theprimarymodificationin

Table 1would haveto bewith respectto thePoisson'sratios. Thus,in thecaseof the90-

degreeMMC, thestiff fiberswouldpreventmatrixcontraction,evenwhenplasticitywas

thedominantdeformationmechanism.Consequently,thePoisson'sratio in thefiber

directionwoulddecreaseevenunderplasticity. Hence,thePoisson'sratio for the90-

degreesystemwouldhaveto bemorecarefullyanalyzedbeforearrivingataconclusion

regardingplasticityor damage.

Mostcurrentfiber-reinforcedMMCs areonly 1to 3 mmthick. Therefore,for thesakeof

simplicity, weshallhenceforthreferto thein-planestrain,perpendicularto theloadingand

thicknessdirections,asthewidth strain;andtheout-of-planestrain,perpendicularto both

theloadingandfiberdirections,asthethicknessstrain. Pleaserefer to Figure3for
definitionsof thestraincomponents.For the90-degreeMMC, thewidth strainwouldbe

parallelto thefibers. Sincethethicknessstrainof the90-degreeMMC is notconstrained

by stiff fibers,thethicknessPoisson'sratiowould increasewith plasticityanddecrease

with damage.

In thisprogram,themechanismsof monotonicdeformationof the0-degreeand90-degree

MMC wereevaluatedusingthemethodsoutlinedabove.Specimenswereloaded

uniaxially,andstrainsweremeasuredin thelength,width,andthicknessdirectionsof the
MMCs. Unloadingwasperformedatdifferentstagesof deformationfor measuring

changesin specimenstiffness,andalsofor microstructuralevaluation.Experimentswere

performedbothatroomtemperatureandatelevatedtemperatures;however,theemphasisin

thispaperis onroomtemperatureexperiments.Theresultsof themechanicaland
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microstructural studies, comparisons with analytical models, and our current understanding

regarding the mechanism of deformation, are provided here.

3. EXPERIMENTAL PROCEDURES

The material tested was an 8-ply unidirectional Ti 15-3/SCS-6 composite, approximately

1.99 mm thick, fabricated by Textron (serial number 890556), using a foil-fiber-foil

consolidation technique; the fiber volume fraction is approximately 0.34. The SCS-6 (SIC)

fiber diameter is approximately 140 I.tm, and it contains alternating outer layers of C and Si,

which protect the fiber from cracking during handling. The Ti 15-3 (Ti-15V-3Cr-3A1-3Sn,

all in weight percent) alloy is a metastable body centered cubic (bcc) beta Ti-alloy, the bcc

phase being stabilized by V.

Uniaxial tensile test specimens were machined from the unidirectional panel using an

electric-discharge machining (EDM) technique; specimen dimensions are shown in Figure

3. The specimens were mechanically polished after EDM cutting to remove any damage

associated with the machining. Specimens were prepared with two different orientations: 0-

degree and 90-degree. In addition, Ti 15-3 matrix specimens, which were fabricated using

the same foil layup process as composite panels, were tested. All specimens were tested in

the as-fabricated condition, involving a cooldown from the HIP-ing temperature of

approximately 815 C; no heat-treatment was performed prior to the testing.

Specimens were gripped using friction grips, and loaded on a servohydraulic testing

machine at a strain rate of approximately 0.002/sec. The longitudinal and width swains

were measured using both swain gages and extensometers; the thickness strains were

monitored using an extensometer calibrated over a full scale range of 25 I.tm. Induction

heating was used for performing experiments at elevated temperatures.

Following mechanical testing, specimens were sectioned slowly using a diamond wafering

blade; significant debonding and fiber cracking can occur during machining if adequate care

is not taken during sectioning. Sections were made perpendicular to the specimen axis

(transverse cross section), and the center of the specimen width, but parallel to the

specimen axis (edge cross section). This latter cross-sectioning technique was performed

to reveal the bulk behavior, rather than effects associated with edges of mechanical test
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specimens.Specimensweremetallographicallypolished,with thepolishedsurfaces

correspondingeitherto thefaceof thetestspecimen,or theedgeandtransversecross

sections.Faceswerepolishedatthesurfaceaswell asupto thefirst setof fibers.
Repeatedpolishingwasperformedon afew testedanduntestedsamplesto confirmthat

cracking,debonding,or slip bandsweredueto deformationalone,andnotassociatedwith

thepolishingprocedure.SpecimenswereetchedusingKroll's reagent,whichwasfound

to beeffectivein revealingslip bands.Metallographicspecimenswereexaminedoptically
andalsousingascanningelectronmicroscope(SEM).

In addition to metallographic techniques, specimens were examined using wansmission

electron microscopy (TEM). Thin strips were cut using a wafering blade, and circular

discs were machined from them using diamond paste and a slurry drill. These were then

polished using a combination of ion milling and jet electropolishing. The electrolyte was a

solution of 4 percent sulfuric acid in methanol and maintained between -15 C and -20 C.

The voltage used was approximately 30 V and the current density was approximately 60

mA/mm2. TEM specimens were examined on a JEOL microscope operating at 200 kV.

i

4. RESULTS

4.1 Mechanical T_| R¢_ults

4.1.1. 0-Degree Composite: Figure 4 shows the stress-strain curves for four 0-

degree specimens, where the longitudinal strains correspond to those measured by the

extensometer. Three of the specimens were tested at Battelle, and the fourth was tested by

Lerch et al. [1991] at NASA Lewis Research Center*. Figure 4 illustrates excellent

reproducibility of stress-strain curves for the 0-degree MMC, with nonlinear deformation

starting at a strain of approximately 0.55 percent.

In Figure 4, specimen 0-9 was partially unloaded from a total,swain of approximately 0.55

percent (point B), then reloaded to failure. Specimen 0-1 was completely unloaded from a

higher value of total strain (point D, 0.8 percent). Calculation of the slopes of the loading

"Lerch et a1.(1991) tested a Ti 15-3/SCS6 composite, which was aged at 700 C for 24
hours in vacuum.



andunloadinglines indicated that the stiffness of the specimens were essentially constant,

with an effective elastic modulus of 176.5 GPa. In addition, there were significant strain

offsets at zero load when specimens were unloaded from the inelastic regime of

deformation. Thus, these results appear to indicate that the primary inelastic deformation

mode was plasticity.

Figure 5 is a plot of the width strain versus the longitudinal strain for three 0-degree

specimens. Both the strain gage and the width extensometer provided identical data. The

width and thickness strains were always negative (both for the 0-degree and 90-degree

specimens); however, in all subsequent plots on transverse (width or thickness) strains in

this paper, the negativ$ of transverse strains have been plotted, for clarity of presentation.

The arrow in Figure 5 indicates approximately the swain value where nonlinearity started in

the stress-versus-longitudinal swain curves. Solid lines have been sketched in the figure

for specimen 0-N11, to better illustrate that the width strain increased at a higher rate after

the nonlinearity point than before the nonlinearity point. The main point to note is the

increase in slope rather than decrease in slope, implying that plasticity probably was

dominant in the inelastic regime of deformation.

Figure 6 is a plot of the thickness strain versus the longitudinal strain for two 0-degree

specimens. Specimen 0-9 had undergone an intermediate unloading at a swain of

approximately 0.5 percent, and the plot shows that the thickness strain was almost fully

reversible in the elastic regime. The changes in slope for specimen 0-6 at longitudinal

strains of 0.005 and 0.008 are probably not significant since they were not observed in

other specimens. The more important point to consider is whether the strains indicate

specific trends during the elastic and inelastic regimes of deformation. Figure 6 illustrates

that the thickness Poisson's ratio was high and approximately constant throughout the

entire loading history, with no significant decrease in the inelastic domain.

4.1.2. 90-Degree Composite: Figure 7 illustrates the stress-strain behavior for four

90-degree specimens. Once again, the figure illustrates excellent reproducibility of the

stress-strain response.

The 90-degree specimens showed a characteristic three-stage stress-sWain behavior :

Stage I (region AB) of high slope, Stage II (region BC) of a reduced slope, and finally
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Stage lIl (region CD) of almost zero slope, the latter having the characteristic of a perfectly

plastic solid. In Stage I, the swain was fully recoverable on unloading, and the composite

behaved essentially as a linear-elastic solid. The elastic modulus was obtained as

approximately 111 GPa.

The data for the specimen (90-20) unloaded from a total strain of 0.5 percent, shows that

the unloading slope was 43 percent less than the loading slope. This would imply that

damage is likely dominant d_ng Stage II of deformation for the 90-degree composite, at

least up to point E. However, Figure 7 illustrates that there also was a small strain offset

(approximately 0.05 percent) at zero load. This would suggest that plasticity also may be

present during Stage II.

Specimen 90-16 in Figure 7 was unloaded from Stage III of the stress-strain curve. The

unloading stiffness for this specimen was approximately 56 percent less than the original

loading stiffness, compared with a 43 percent stiffness loss for specimen 90-20, which

was unloaded from Stage II. Thus, in proceeding from point E to G, the unloading

stiffness dropped by 13 percent. On the other hand, the zero load offset for specimen 90-

16 was approximately 0.23 percent, which was almost 4.5 times that for specimen 90-20.

Thus, these results indicate that deformation in Stage III is controlled by both plasticity and

damage, with the former likely playing a more dominant role.

Figure 8 is a plot of the width strain versus the longitudinal strain for two 90-degree

specimens. This plot is very similar to Figure 7, illustrating the three-stage segmental

nature of the 90-degree MMC. The slopes of the curves correspond to the instantaneous

Poisson's ratios in the width direction. Figure 8 indicates that there was a sudden drop in

the width Poisson's ratio in going from Stage I to Stage II, and that it approached zero in

Stage III. A decrease in the width Poisson's ratio for the 90-degree composite does not

necessarily imply damage, in contrast to the case of 0-degree specimens (see Figure 2).

However, as will be shown later, the decreases in Poisson's ratio were too large to be

explained by a plasticity mechanism alone.

Figure 9 is a plot of the total thickness Poisson's ratio, defined as the total thickness strain

divided by the total longitudinal swain, for two 90-degree specimens. The plots show a

gradual increase in the ratio as the material was deformed into the inelastic regime of

deformation (past 0.2 percent strain), in contrast to the case of the width strain. The

i
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increase in the thickness Poisson's ratio in Stages II and III indicates that the matrix was

undergoing plastic deformation, and that some plasticity was present even in Stage II. The

latter behavior is consistent with the small strain offset that was observed in Figure 7, when

a specimen was unloaded from Stage II.

4.1.3. Ti 15-3 Matrix: Figure 10 is a stress-strain plot for the Ti 15-3 matrix

material, illustrating an almost elastic-fully plastic behavior for the matrix material; the

specimen was not loaded to failure. The matrix modulus was approximately 90.3 GPa.

The width and thickness strain data are not plotted here, but they showed the anticipated

increases in the Poisson's ratios as the material was deformed from the elastic into the

plastic regime of deformation. The elongation to failure of the matrix material was

approximately 12 percent.

In summary, the mechanical measurements suggest that plasticity likely was dominant in

the inelastic regime of deformation for the 0-degree composite. In contrast, the 90-degree

composite exhibited characteristics of both damage and plasticity. The former likely was

the dominant mechanism in Stage II, and the latter likely was the dominant mechanism in

Stage III.

4,2, Microstructure

4.2.1. As-Received Material : Figures 1la and 1 lb are longitudinal and transverse

sections of the as-received material. The regions indicated by A, B, and C correspond to

the fiber, reaction zone, and matrix, respectively. Dark lines, such as shown by D,

correspond to the outer carbon layer of the fiber. Observations at higher magnification

indicate they (D) are not debonded regions. They appear dark partly because of surface

relief; the matrix tends to polish faster than the fiber. In Figure 11, the feature that we

would like to emphasize is that the material is free of cracks or any obvious debonding or

damage; thus the polishing procedure does not appear to have introduced any defect in the

microstructure.

Figures 12a and 12b are corresponding etched microstructures of the as-received material.

There is no indication of slip bands in the as-received microstructure. The small needle-

shaped particles are different intermetallic compounds and precipitated alpha phase; they did

not play any role in so far as damage development or plasticity nucleation was concerned.
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The arrow in Figure 12a shows a grain boundary (gb). In addition, there was a blocky

type of phase (most likely titanium carbides, based on previous studies at Battelle

[Majumdar and Newaz 1991]) along the ply-to-ply interfaces (indicated by arrow A in

Figure 12b), i.e., in those zones where the Ti 15-3 foils had bonded during the hot isostatic

pressing (HIP) operation at approximately 815 C. Such zones are regions for potential

cracks under thermo-mechanical fatigue loading, as pointed out previously by Majumdar

and Newaz [1991].

4.2.2. Deformed 0-Degree Composite: Figure 13 shows the etched microstructure

of the Ti-alloy surface of a 0-degree specimen, unloaded from a total strain of

approximately 0.9 percent. Slip bands, indicated by the abbreviation 'sb' in the figures,

may be observed emanating from the grain boundaries. This confirms that plasticity was

present, and that grain boundaries were strong sources for dislocation emission.

Figures 14 shows the microstructure of a 0-degree specimen that was polished down to the

fit'st set of fibers. This specimen also was unloaded from approximately 0.9 percent strain.

The photo micrograph illustrates two important points: (i) there were no fiber cracks, at

least up to a total strain of 0.9 percent, and, (ii) there was widespread matrix plasticity, as

evidenced by the numerous slip bands (see arrows). Thus, these microstructural features

indicate that inelastic deformation of the 0-degree MMC was primarily through plastic

deformation of the matrix.

Figure 15a is an optical micrograph at the fiber-matrix interface of a 0-degree composite

that was strained to 0.9 percent. The figure illustrates slip bands (sb) which appear to

nucleate from reaction-zone cracks (arrow A). This implies that in addition to grain

boundary dislocation sources, reaction-zone cracks are another important source for

dislocation nucleation. Figure 15b is a SEM micrograph of another region, showing slip

bands nucleating from the matrix/reaction-zone interface. The three major slip bands in this

figure are associated with reaction-zone cracks; the cracks have been highlighted by ink

because they were only faintly visible (see arrow). However, the smaller and faintly

visible slip bands between the major slip bands are not associated with cracks, indicating

that reaction-zone cracks are not essential for nucleating slip bands from the fiber-matrix

interface. The nonassociation of slip bands with reaction-zone cracks may be because the

bulk matrix stress at 0.9 percent strain was sufficiently high to cause widespread plasticity.

E
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In order to ascertain whether reaction-zone cracks were active in the elastic and micro-yield

regime (at strains in the range 0.3-0.5 percent), we followed the slip band nucleation

process using a surface replication technique. Those results indicate [Majumdar, Newaz

and Ellis 1991, Newaz and Majumdar 1991] that some reaction-zone cracks nucleate at

strains as low as 0.3 percent, but they appear to remain essentially inactive up to a strain of

approximately 0.45 percent. Optical and SEM observations failed to provide any evidence

of localized plasticity in grains that later revealed extensive slip bands. Beyond 0.45

percent strain, the reaction-zone cracks are able to nucleate minute slip bands of lengths

roughly equal to those of the reaction-zone cracks; the slip morphology is similar to what is

observed during blunting of cracked ductile metals. Only at strains between 0.5 and 0.6

percent do longer slip bands become easily observable and start having the appearance

shown in Figures 14 and 15. The entire sequence indicates that the matrix awaits the

development of a sufficient average stress before slip bands are observable at reaction zone

cracks*. Although detailed TEM examination of the reaction-zone/matrix interface is

needed, we were able to resolve slip bands as small as 1 grn. Thus, lack of any observable

slip band below 0.45 percent strain in any grain (particularly those that revealed extensive

slip band activity at strains above 0.5 percent) is indicative that plasticity likely is negligible

below 0.45 percent strain.

At higher strains (0.6 percent and above), many more reaction-zone cracks nucleate, and

they are almost always associated with slip bands. Simultaneously, grain boundary

dislocation sources become active, indicating gross plastic deformation of the matrix

material. It is possible that gross matrix plasticity may aid the formation of reaction-zone

cracks at these higher strains. We base this possibility on the nonuniform spacing of

reaction-zone cracks in going from one grain to the next (see Figure 15a). If mawix

plasticity had no effect, then the reaction-zone cracks would likely have formed an equally

spaced array (similar to what is observed in ceramic matrix composites), independent of the

particular grain surrounding the fiber. On the other hand, from an iso-strain compatibility

consideration, nonuniform plastic deformation in different grains would cause nonuniform

strain (and stress) distribution along the length of a fiber, and likely show different reaction-

zone crack spacing along the fiber length.

It was also observed that as the slip bands grew in size, the reaction-zone cracks became

" Simple fracture mechanics calculations indicate that the stress intensity factor at such
cracks range between 1 and 4 MPa']m, which are small numbers.
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largerandbetterdefined.Thismaysimplybearesultof straincompatibility. Alternately,
thebackstressof dislocationscouldalsohaveaidedthegrowthof suchcracks. Our

currentobservationsarenotsufficientto pinpointtheexactsequenceof matrixplasticity
andreaction-zonecracksduring thisstageof deformation.However,sincegrossmatrix

plasticityis conf'trmedduringthis stage,reaction-zonecracksmaynotbeasimportantfor

strainsabove0.6percentasthoseoccurringbelow0.5percent(microyielddomain).

Anothernotablefeatureof Figure15ais thepathof thereaction-zonecrack. Theregion
markedby thearrow,B, showshow thecrackhasdeviat_ from theoriginalplaneinto the

fiberdirection. Thetransitiongenerallyoccurredatoneof thecarbon-siliconinterfacesof

theouter layersof theSCS6fibers. Hadthisdeviationnotoccurred,crack initiationfrom

thereactionzonecouldhaveled to fractureof thefiber,andpossiblyto failureof the

composite.CrackpathssuchasB in Figure15awerequitefrequent;in fact,at anumber

of locations,thedeviatedcracksjoined togetherto providetheimpressionof adebonded
fiber. More importantly, the crack paths do indicate that if brittle reaction zones cannot be

avoided, then a weak or a ductile interface should be available to prevent any reaction zone

cracks from propagating into the fiber.

T.

|
E

Final failure of the 0-degree composite was precipitated by fiber fracture, so that an

appropriate failure criteria for the composite would be the strain corresponding to fiber

fracture. However, fiber failure appeared to be influenced by failure of Mo ribbons, which

were used to hold the fibers in place during fabrication of the MMC; the Mo ribbons were

spaced approximately 5 mm apart. Figure 16a shows the longitudinal cross section around

the fracture surface. The cracked tear-drop shaped regions (only one half of the tears are

visible in this fracture half) correspond to the Mo ribbon. Figure 16b corresponds to the

same sample, away from the fracture surface, but around another Mo ribbon. This

micrograph once again shows significant cracking of the Mo ribbon. It appears that Mo-

ribbon fracture occurs prior to fiber failure; evidence for this sequence is the fact that fiber

damage was observed at intervals of approximately 5mm, coinciding with locations where

the Mo ribbons were placed. Also, the fracture surface showed Mo ribbons spanning the

length of many plies (as many as six out of eight), indicating the preferred failure location.

Thus, Mo ribbons, with limited ductility, are sources of weakness, and probably warrant

replacement by a more ductile material.

Figures 17 and 18 are TEM images of the untested material. Although the micrographs
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indicatethepresenceof dislocations,theirdensitywasquitelow andtherewasvery little

evidenceof anydislocationpileup.Thus,whateverinelasticdeformationthatoccurred

duringcool-downfrom theprocessingtemperaturelikely wasinsufficientto cause

widespreadplasticityof thematrix.

Figures19aand19bare,respectively,bright-fieldanddark-fieldTEM imagesof afoil

preparedfrom a0-degreespecimenthatwasloadedto atotalstrainof 0.9percent;the

micrographsweretakenarounda[011]zoneaxis. TheTEM foilsweresectioned

perpendicularto thetensileaxis,andfoil perforationscorrespondedapproximatelyto the

centralregionsof thecrosssectionof thetestspecimen.Therefore,themicrographsare

representativeof thematrixmaterialbetweenthefibers.

In Figure 19a/19b,thelinerunningfrom thetop-left to thetop-rightof themicrograph

correspondsto agrainboundary.Thefiguresshowalargenumberof dislocations

emanatingfrom thegrainboundary.Manyof thedislocationarrayshadaninversepileup

typeof configuration;thedislocationspacings,however,did notconformto theoretical

predictions,likely becauseof relaxationof stressesassociatedwith polishingof theTEM

specimen.Thelargearraysof dislocationsconfirmthatwidespreadplasticityof thematrix

occurswhenthe0-degreecompositeis loadedinto theinelasticregimeof deformation.

Additionally,Figures19aand19billustratethatgrainboundarieswereanimportantsource
for dislocationemission.Burgersvectoranalysisindicatedthatthedislocationswereof the

type[111], in agreementwith thepreferredBurgersvectorfor abccmaterialatroom

temperature.ReferringbacktoFigures13and14,it is clearthattheslip bandswereeasily

observablebecauseof thepropensityof thematrixmaterialto form dislocation-pileuptype

of configurations.

Figure20,aTEM micrographfromanotherregionof thetestspecimen,showsanumber

of intersectingpileups.We couldtracethesourceof oneof thesepileups(theonethatruns

at 1o'clockposition)to agrainboundary.However,thesourcefor theothertwo pileups

remainsuncertain;theyappearedtoemanatefrom thefiber-matrixinterface,whichwasat

therightof themicrograph.Effortsarecurrentlyunderwayto determinemorerigorously
thenatureof dislocationemissionfrom thereactionzoneboundary.Thesignificantpoint

hereis thatbothTEM andopticalmicroscopyestablishtheoccurrenceof largedislocation

activitiesin the0-degreespecimenloadedinto theinelasticregimeof deformation.This

evidence,alongwith theabsenceof fiberormatrixcracks,confirmmetallurgicallythatthe
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primary inelastic deformation mode of the 0-degree MMC was plasticity of the matrix, at

least up to a s_n of 019 percent. The only mech_sm by which damage may have

contributed t0the overall strain was through crac_g of the reacti0n zone_ However, the

cracking was limited to a small surface layer, so that the contribution of damage to the

overall deformation response was _ely Small compared to the contribution of plasticity.

We have performed preliminary TEM analyses of the microstructure to understand the

source for the observed concentrated slip (dislocation pile-up type of configurations), rather

than diffused slip, in the Ti 15-3 matrix Of the composite specimens. Observations at high

magnifications with appropriate reflections showed an extremely fine precipitate structure in

the matrix material. Although a detailed analysis of the shape and size of the fine

precipitates was outside the scope of this investigation, we believe, based on the work of

Silcock [1958], McCabe and Sass [1971], Sass (1969) and Blackburn and

Williams[1968], that the fine precipitate structure corresponds to the c0-phase in the

metastable bcc Ti-15V-3Cr-3Sn-3AI microstructure. The c0-phase is a hexagonal close-

packed (hcp) phase, of size between 10 and 30 A °, with lattice parameters ao_=(',]2)a13, and

co=(_/3/2)a13 ; the orientation relations are (0001)¢oll(l 11)13, and [21 i'0]ol{ [1i0113. It has

been shown by McCabe and Sass [1971] that the coherent or-particles are arranged in

cluster of rows along <11 l:_sdirections, and that this particular arrangement was

responsible for { 111 } lines of intensity (streaking) in reciprocal space for as-quenched Ti-

V alloys. For the current material, in the as-fabricated condition, one would expect to see

streaks from the <111> rows of o-phase, if that phase was indeed present. The orientation

of the streaks in the selected area diffraction pattern (SADP) would be parallel to the line

drawn from the origin (000) to the plane formed by the zone axis and the <0001>_ or

<111>13 directions. Figures 21 a through 2 ld show the SADP of the Ti 15-3 matrix in the

composite material for four different zone axes: [110], [111], [120] and [331]. A few of

the bcc 13-reflections are numbered in the figures. The figures show streaks (lines)

associated with to-reflections; the streaks pass through specific 13-reflections because those

d-spacings coincide for both co and 13reflections (e.g. (1]'2")13and (30_0)_, or (1T0)_ and

(1210)o). Additionally, the orientations of the streaks in each of the figures are in
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agreementwith thosefor the c0-phase being oriented along <111> directions; e.g., for the

[110] zone axis, the streaks in the SADP lie parallel to the line drawn from the origin to the

(1]2-) plane and (1_2) plane, both of which are formed by the zone axis and the <111>

directions. Figure 21c shows three faint spots associated with specific to-reflections.

In summary, the diffraction patterns in Figure 21 confirm the presence of the fine t0-phase

in the Ti 15-3 matrix of the composite. A consequence of the fine and coherent o>-phase

structure is that they are easily shearable by dislocations. Thus, a slip step left by a

preceding dislocation favors the next dislocation to pass through the same location, rather

than finding an alternate nearby route. It appears that this microstructural characteristic was

responsible for concentrated slip and dislocation pileup type of configurations in the matrix

material, rather than diffused slip. It was this concentrated slip, caused by the fine

phase, that likely made slip bands easily observable.

4.2.3, Deformed 90-Degree Composite : Figures 22a and 22b correspond to

the edge cross section (at mid-width) of a 90-degree specimen that was loaded into Stage

III. Significant fiber-matrix debonding may be observed, both at the outer and inner

carbon layers. Radial cracks in the brittle reaction zone also may be observed, such

cracking being necessitated by the large deformations that are seen to occur around the

fibers. Although some of the fibers in Figure 22a appear not to have debonded,

observations at higher magnification indicated that indeed all fibers had debonded. The

surface kink (location A) in Figure 22a is a real effect, although the location was rounded

during metallographic polishing. Such kinks/steps provided the appearance of cracks on

the specimen faces, but no cracks were observed. It appears most likely that the surface

steps resulted from localized plasticity between the specimen faces and the debonded matrix

around the fibers.

Figure 23 is a longitudinal section of the same composite. This micrograph shows that, in

addition to debonding, there was cracking in the reaction zone and in the outer Si-rich layer

of the fiber. Many of the reaction-zone cracks had a saw-tooth appearance, which suggest

that debonding is also associated with a cracking process, involving radial and axial

cracking at inner and outer carbon layers. The crack-growth mode of debonding is also

energetically favorable, because once a crack nucleates the load required for further
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propagationof thecrackwoulddecreasewithcracklength.

Figure24 showstheetchedmicrostructureofa90-degreespecimenthatwasloaded into

Stage III. The micrograph shows two types 0fslipbands: i) slip bands that are arranged in

a triangle (shown by regions A in the figure), and give the appearance of slip line fields

emanating from the fiber, and, ii) intense shear bands (shown by region B in the figure),

that zig-zag between alternate fibers in adjacent plies. Observation of samples that were

loaded into different regions in Stage 11I indicated that the triangular type of slip bands

(Type A) occurred earlier, followed later by intense shear bands. In fact, final failure

occurred by shear along the intense shear bands.

It is also of interest to note in Figure 24 that fibers in adjacent plies were not arranged in the

form of a square array. Rather, the fibers in adjacent plies were staggered, which would

make it easier for intense shear bands to form. Observation of other samples confirrned

that the staggered fiber arrangement, shown in Figures 24, was quite frequent. It is

possible that the staggered fiber arrangement may be a result of the MMC processing

technique, where HIP-ing of the foil-fiber-foil system occurs by plastic shearing of the foil,

which would favor a staggered arrangement of fibers by the same intense shear

mechanism, or possibly by some instability process. Detailed investigation of the

fabrication process is necessary to ascertain the source for the frequent staggered

arrangement.

Figure 25 is an optical micrograph of an etched 90-degree sample that was loaded to a total

strain of approximately 0.5 percent, corresponding to the middle of Stage II deformation;

the loading axis is vertical in the figure. Slip bands (indicated by 'sb') may be observed

nucleating preferentially at the reaction-zone cracks (see arrows), similar to what was

observed for the 0-degree composite. We have used a surface replication technique to

follow the initiation of reaction-zone cracks and slip band nucleation from such cracks.

Those results {Majumdar et al. [1991] and Newaz et al. [1991 ] }indicate that the reaction-

zone cracks start forming at strains between 0.4 and 0.5 percent, which is well into the

middle of Stage II deformation. Thus, those slip bands are unable to explain the large drop

in slope observed in going from Stage I to Stage II in the stress-strain curves. Observation

of the top and bottom of the fibers did not indicate any obvious debonding, and it was

suspected that the debond may have closed as the specimen was unloaded from Stage II.
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To further clarify the mechanism of deformation in Stage II, a surface replication technique

was adopted. Surface replicas were obtained at different values of load. Figure 26 is a

SEM image of a replica that was obtained at a strain of 0.5 percent, i.e., in Stage II. The

regions indicated by arrows are not fiber cracks. Rather, they represent the replication tape

that had penetrated from the surface and entered into the specimen in the debonded regions.

The penetration was localized only at the top and bottom of the fiber, indicating that those

were the regions where debonding occurred. The resulting nonuniform penetration of the

replica, and the stresses that were set up in the replica during drying, likely were

responsible for the cusped and blob-type appearance of the replica at debonded regions.

The specific locations of the debonds are also consistent with the fact that such locations

experience the maximum tensile radial stress during loading, which would tend to debond

the matrix from the fiber. Further conf'Lrmation that debonding and closure were operative

in Stage II was obtained by taking a replica after the specimen was unloaded. Figure 27 is

a SEM micrograph of another replica from the same region as Figure 26, after the specimen

was unloaded from 0.5 percent strain. The regions marked by arrows show that there was

no penetration of the replica, indicating that the debond had closed on unloading. These

observations are consistent with the unloading curves shown in Figure 7.

An added feature that we would like to point out regarding Figures 26 and 27 is the small

slip band activity at the top and bottom of fibers (see arrow marked sb). These slip bands

appear to precede debonding. Their specific locations are consistent with elastic

calculations, which indicate that in the 90-degree composite, the maximum effective stress

in the matrix occurs at the top and bottom of fibers, rather than at locations 90 degrees with

respect to the loading axis. It was also observed that after the debonding stage, these slip

bands became dormant. This characteristic is again consistent with simple calculations of a

hole stressed in an elastic solid.

In summary, the metallurgical evaluations indicate that the primary inelastic deformation

mechanism in Stage II is fiber-matrix debonding. A similar conclusion was reached by

Johnson et.al [1988]. However, more significant here is the slip band activity in Stage II,

nucleated by premature cracking of the reaction zone. Such plasticity likely was

responsible for the small strain offset that was observed at zero load. Clearly, in order to

prevent premature plasticity, there is a need to improve the fiber-matrix interface/interphase

property. In Stage III, plasticity played a more dominant role, and debonds were prevented

from closing when the specimen was unloaded. Damage also increased in Stage III, but it
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wasaidedbyplasticity;i.e.,crackingordebondingwerenot theprimarydriversof

inelasticityin StageIII, unlikein StageII. During thelaterstagesof StageIII, intense
shearbandsformedbetweenfibersin adjacentplies. Theseultimatelyled toformationof

shearcracksin thematrixat thereaction-zonecracks,andtheirpropagationto failurebya
shearmechanism.

5. ANALYSES

We attempted to analyze the stress-strain response of the composites based on the observed

deformation mechanisms. The results of a finite element method (FEM) analysis, which

accounted for both damage and plasticity, will be published separately [Brust et al. 1991].

In this section, we show, as an example, how the predictions of a continuum-based elastic-

plastic model agreed with the experimental data. The emphasis here is to illustrate that both

plasticity and damage must be accounted for in any comprehensive model, and that

rigorous validation is necessary before any model is accepted as being representative of the

material behavior.

The model that we selected was the analytical model of Dvorak and Bahei-el-Din [1982],

for which a computer code named AGLPLY is available. It is based on a vanishing fiber

diameter model, and can be used effectively to predict lamina and laminate properties from

the elastic-plastic response of the matrix and fiber materials. The primary drawback of the

model is that it cannot account for damage. However, this drawback was useful in

estimating how model predictions would be off from measured data, if damage did occur in

the composite (primarily the 90-degree composite).

Figure 28 shows comparisons of the model predictions with experimental data for the 0-

degree composite. The model predictions are good up to a strai n 0 f approximately 0.9

percent. Beyond that strain, the differences between the model predictions and the

experimental results are significant. The reasons for those differences are not yet clear.

They may be related to premature cracking of Mo ribbons, as well as reaction-zone cracks,

which were not accounted for in the analyses. We would like to note, however, that the

fiber stresses become greater than 2800 MPa for composite strains larger than 0.9 percent.

Such stresses are close to the failure strength of fibers (approximately 3100 MPa), so that

composite strains above 0.9 percent may not be of much practical significance.
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Theelastic-plasticmodelwasgoodinpredictingthemeasuredyield strainof approximately
0.5percentfor thecomposite.Thisstrainis lessthantheyield strainof approximately0.8

percentfor thematrix. Thereasonfor thisdifferenceis theresidualtensilestressin the

matrixoncoolingfromtheprocessingtemperature.A simplemicro-mechanicalthermal

residual-stressanalysis,assumingthatctandE remainconstant with temperature, shows

that the average mechanical strain in the matrix from cool-down is approximately

8m = (_(_ (_T/{(EmVm/EfVf) + 1 } (1)

where 8(x = O.m-C_f(greater than zero), 8T=TF-To, Vm and Vf are the volume fractions of

the matrix and fiber, respectively, TF is the fabrication temperature (815 C), and To is the

test temperature (25 C). The subscripts m and f correspond to the matrix and fibers,

respectively. A one-dimensional model, with no influence of transverse constraint stresses

is assumed. Using Era=90 GPa, El---400 GPa, o.m=9xl0-6/C, and o_f=4.5xl0-6/C,

equation (1) yields a matrix mechanical strain of approximately 0.24 percent at room

temperature. If this residual mechanical strain is added to the observed yield swain of 0.5

percent for the composite, we obtain a matrix strain of 0.74 percent at yielding of the

composite. This value is close to the yield strain of approximately 0.8 percent for the

matrix material. Thus, this simple residual stress analysis is able to provide a fairly good

estimate of the average thermal residual axial stress, and more importantly provides a

physical explanation as to why the macroscopic yield strain of the composite was in the

range 0.5-0.6 percent rather than 0.8 percent.

More accurate 3-D analysis {Newaz, Majumdar and Brust (1991) and Brust et a1.(1991)}

reveal that in an extremely small zone surrounding the fiber, the effective residual stress is

only slightly less (up to 100 MPa less) than the yield stress of the matrix. Thus, this region

would be the flu'st to yield on application of load. However, this locally highly stressed

region had negligible effect on the yield stress of the composite; i.e., the yield strength was

dominated by bulk plasticity of the matrix. Additionally, we observed that slip bands did

not nucleate at strains below 0.45 percent, at which strain the highly stressed zones should

be well into the plastic regime of deformation. Although additional TEM work is needed to

confirm any lack of plasticity below 0.45 percent strain, our experimental observations



22

appearto indicatethatthereaction-zone/matrixinterfacemaypossiblyhinderdislocation

nucleation.Also, theconstraintof thesurroundingfiberandmatrixmayhaveprevented

dislocationsnucleatedin thehighlystressedzonefrom penetratinginto thesurrounding
matrix.

Figure29 showscomparisonsof themodelpredictionswith theexperimentaldatafor the

90-degreecomposite.Thefigureillustratesthatthemodelis excellentfor predictingthe
longitudinalstress-strainresponse,at leastupto a strainof 0.6percent.This good

correlationof theAGLPLY analysisis, however,surprising,sincethemicrostructureof

thecompositeshowedclearevidenceof fiber-matrixdebondingin StageII andStagem of
deformation.

Figure30 isa plotof the instantaneouswidth Poisson'sratios(instantaneousslopeof the

width-strain-versus-longitudinal-strainplot) versusthelongitudinalstrainfor the90-degree

composite.Theexperimentaldata,representedbydots,indicatethattheinitial Poisson's

ratiowasapproximately0.18. At longitudinalstrainsaround0.2percent,theratiodropped

sharply,coincidentwith thestartof StageII deformation.ThePoisson'sratio in StageII

wasapproximately0.07. At largerstrains,in StageIII, theratiodroppedevenfurtherand

approachedavalueof zero.Figure30alsoshowspredictionsfrom theAGLPLY analysis

andtheFEM analysisof Brustet ai.[1991];thelatteraccountedfor fiber-matrixdebonding

damage.AlthoughtheAGLPLY modelappearsadequatefor predictingtheinitial

Poisson'sratio, it is inadequatefor predictingthePoisson'sratio in StageII andStageIII.

Theresultsof theAGLPLY analysisinFigures29and30illustratethepitfalls of validating

modelsusingonly theresultsof stressversuslongitudinalstrainmeasurements.If only

Figure29wasconsidered,thenonemight concludethatthemodelwassatisfactory,andit

couldbeusedin designfor calculatingstressesandstrainsin criticallocations(suchasat

thefiber-matrixinterface).Ontheotherhand,Figure30clearlypointsout thatsucha

conclusionis faulty; in fact,theresultswouldbehighly nonconservative,sincethemodel

wouldpredictlowerstressesatthefiber-matrixinterface,aregionwherefinal failureoften
initiates. Additionally,if onewereto interpretdeformationmechanismsbasedon the

performanceof theoreticalmodels,thenatotallywrongpicturewouldemerge.
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6. DISCUSSION

There were three primary objectives of the work described in this paper:

(i)

(ii)

(iii)

To understand the mechanisms of deformation of a MMC using key experiments

and exhaustive microstructural examination.

To evaluate the contributions of plasticity and damage to the overall deformation

behavior. A literature survey had indicated that there was very little experimental

evidence regarding which mechanism dominated, although a number of models

assumed a priori one or the other.

To evaluate existing and new models based on measured longitudinal and off-axis

strains, and observed deformation mechanisms.

A Ti 15-3/SCS6 composite was chosen as a model material because it is a well developed

system, and is anticipated to provide important insights into the deformation mechanisms of

other Ti-alloy and Ti-aluminide based MMCs. Experiments were performed on the 0-

degree and 90-degree systems, and the matrix material. Only monotonic tests were

considered, to keep experimentation simple and relatively easy to analyze, and to avoid

complications from reversed deformation, oxidation, and time-dependent effects.

The results presented here suggest that a detailed approach is able to provide a coherent

picture of the deformation mechanisms. Thus, we have been able to establish that the

inelastic deformation of the 0-degree MMC is dominated by plasticity of the matrix

material. On the other hand, the 90-degree composite has a three-stage deformation

response, with both damage and plasticity plaYing important roles.

The experimental results suggest that both the unloading compliance and Poisson's ratio

techniques can be useful indicators of damage and plasticity of MMCs. However, it should

be recognized that matrix cracks were few under monotonic loads, so that it is not certain

whether mechanical measurements will be adequate to provide information on matrix

cracking under, say, fatigue loading. In the absence of such data, we believe that detailed

microstructuml evaluation is imperative to confirm the occurrence of different inelastic

deformation processes.

The dislocations (in TEM micrographs) and slip band features that were observed illustrate
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theplasticity mechanismsin theTi 15-3/SCS6composite.To ourknowledge,thereis very

little work in theliteraturewhichshowclea,-lytheplasticdeformationmorphologyin fiber-

reinforcedMMCs. In additionto grainboundarysites,reaction-zonecracksalsowere

foundto bestrongsourcesfor dislocationnucleation.Consequently,it is importantto

focusattentiononoptimizingthefiber-matrixinterface,toretardtheformationof reaction-

zonecracks.This factorbecomesparticularlyimportantfor intemaetallicbasedcomposites,

wherethematrixmaypossessextremelylow ductility, sothatthereaction-zonecracks

wouldprecipitatebrittle failureratherthanslip bands.In thispaper,wehavenotaddressed
themechanicsandmorphologyof dislocationnucleationfromthematrix/reaction-zone

interface.However,theexperimentalobservationswarrantadeeperunderstandingof
dislocationnucleationfrominterfaces.

Themodelingstudiesshowthatit is importantto rigorouslyvalidatemodelsusinga

combinationof longitudinalstrainandoff-axisstrainmeasurements.Thus,whereasthe

AGLPLY analysiswasableto predictthestress-versus-longitudinalstrainresponseof the

90-degreeMMC, it wasinadequatefor predictingoff-axisstrains.This wasbecausethe

analysisneglecteddamage,whichwasobservedin theexperiments.

Thedebondingdamagethatwasobservedin the90-degreecompositeat astrainof 0.2

percentsuggeststhattheradialbondstrengthis weakandprobablynegligible. In fact,our

FEM analysis[Brustetal. (1991)]wasabletopredictthePoisson'sratioextremelywell,

assumingazerobondstrength.Onewayof evaluatingtheroleof radial interfacestrength

betweenthefiberandthematrix,is todeterminetheonsetof StageII atahigher

temperature,wheretheeffectof residualstressesis expectedto bereduced.Figure31

providescomparisonsof thestress-straincurvesat roomtemperatureand538C. Thethree-
stagedeformationbehavioris observedat bothtemperatures.However,moresignificantis

thattheonsetof StageII deformationoccursatamuchlowerstressat 538Ccompared

with thatatroomtemperature.Thus,theseresultsillustratethedominantinfluenceof

residualstresson theinelasticdeformationbehaviorof the90-degreecomposite.

Additionally, from adesignperspective,it maybeprudentto baseanalysesonzerobond

strengthfor thiscomposite,becauseit wouldprovideconservativeassessmentof local

stressesandstrains.We wouldalsolike to add,thatstrengthsof ceramic-metaljoints are

oftenlow (40-250MPa)[MajumdarandAhmad(1991)],beinggenerallylower thanthe

typicalstressesthatareanticipatedto beexperiencedby MMCsin service.Consequently,

from anengineeringstandpoint,theassumptionof zerobondstrengthmaynot bevery
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Theaspectof thiswork thatwewouldlike to emphasizeis theunderstandingit provides

aboutthemechanismsof inelasticdeformationof MMCs. Observationof slipbands,aided

bythefine co-phasestructure,providedusefulinformationabouttheplasticityprocess.For

the0-degreecomposite,grainboundariesandreactionzoneswereimportantsourcesfor

dislocationnucleation.Whatwasalsointerestingwasthatalthoughthereaction-zone

cracksstartedappearingatstrainsaslow as0.3percent,slip bandactivityhadto wait until

thematrixstressin thebulk wascloseto theyieldstrengthof thematrixmaterial. We
believethatthiswassobecausethereaction-zonecracksweresmall,havingstressintensity

factorsin therange1to4 MPa4m. However,thecharacteristicsof thefiber-matrix

interface,coupledwithconstraintsofferedbythesurroundingfiberandmatrix,also

probablycontributedin delayingslip bandactivityatreactionzonecracks,in thehighly

thermally-stressedregionsurroundingthefiber.

Regardingthe90-degreecomposite,theexperimentsindicatedthattheradialfiber-matrix

bondfor thecompositeis low, whichwasresponsiblefor thepropensityfor debonding.A

strongerinterfacesu-engthis certainlydesired. In StageII, plasticitywasalsoobserved,in

additionto debonding.Theinitial slipbandsnucleatedprimarily fromreaction-zone
cracks. It appearsthatthesecrackswere,in turn,causedbypreliminarydebonding,for

only thencouldsufficienttangentialstressbegeneratedtocausecrackingof thereaction
zone.

Theintenseshearbandsthatwereobservedin StageII probablywereinfluencedby the

staggeredarrangementof fibersin adjacentplies. As alreadyindicated,suchan

arrangementmaybearesultof theprocessinghistory. Furtherwork is neededto clarify
andestablishthispoint. Theoccurrenceof intenseshearbandslikely wasresponsiblefor

thestress-straincurvebecomingalmostflat in StageHI. Additionally, theyhastenedthe

nucleationof shearcracksfrom reaction-zonecracks,andtheirultimatepropagationto

shear-dominatedfailure. Thismechanismmostlikely wasresponsiblefor significantly

reducingtheelongationto failureof thecomposite(< 2 percent)comparedwith thematrix
material.

Figures32and33summarizeourcurrentunderstandingof thesequenceof events
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associatedwith thedeformationof 0-degreeand90-degreeMMCs. Thesefiguresarebasedon the

measurementsandmechanismsobservedin this investigation.Theyindicatethatbothplasticity

anddamagemustbeincorporatedin anycomprehensivemodelof MMCs. Additionally,models

mustincludetheeffectof reactionzonesandtheprocessinghistories.To ourknowledge,

extremelylittle attentionhasbeenfocussedon theseaspectsof theproblemin modelingstudies.

7. CONCLUSIONS

The following conclusions may be drawn based on the work presented here:

(i) Inelastic deformation of the 0-degree MMC is dominated by plasticity at room temperature.

This was confirmed by a combination of mechanical measurements and metallurgical

evaluation techniques.

(ii) The sequence of events associated with inelastic deformation of the 0-degree composite has

been identified.

(iii)

(iv)

The 90-degree composite has a characteristic three-stage deformation behavior: Stages I, II,

and III. The width Poisson's ratios show an intermediate plateau behavior in Stage II, with

the ratio decreasing to zero in Stage III.

Inelastic deformation of the 90-degree composite is controlled by both damage and plasticity,

and the sequence of events associated with the inelastic deformation response has been

identified.

(v)

(vi)

The existence of a fine coherent co-phase in the as-processed Ti 15-3 matrix of the composite

material likely was responsible for observation of concentrated slip and dislocation pileup

type of configurations.

Residual stresses play a key role in the debonding of the 90-degree composite. Thus,

whereas residual stresses may be undesirable for the 0-degree MMC, they may be desirable

for the 90-degree MMC.
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(viii)
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Formation of intense shear bands in Stage HI (for the 90-degree composite), and

their influence in hastening shear dominated failure, likely were responsible for low

elongation to failure of the 90-degree composite compared with the matrix material.

Comparisons of the experimental results with the predictions of an elastic-plastic

model show that rigorous validation is necessary to establish whether a model is

adequate for predicting the constitutive response of a MMC.
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(a) Longitudinal, and, (b) transverse cross sections of the as-received Ti 15-
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(a)Highermagnificationopticalmicrograph,correspondingto Figure14,

showingslip bands(sb)associatedwith reaction-zonecracks;(b) SEM

micrographof anotherregion,showingslip bands(sb)emanatingfrom the
reaction-zone/matrixinterface.

Longitudinalcrosssectionof a0-degreespecimen,showingfiberandMo-
ribbonfracturesassociatedwith failureof thecomposite.Theregionnext to

thefracturesurfaceis shownin (a). Theregionin (b) is approximately5

mmfrom thefracturesurface,showingcrackingof fibersandMo-ribbonat

thatlocation.

TEM micrographof theas-receivedmaterial,showingbuilt-in dislocation
structures.

TEM micrographof theas-receivedmaterial,showingbuilt-in dislocation

structures.

TEM micrographsof thedeformed0-DegreeTi 15-3/SCS6composite.

Imagestakenaroundthe[011]zoneaxis. (a)Bright field, and(b) Dark
field.

TEM micrographsof thedeformed0-DegreeTi 15-3/SCS6composite,

showingintersectingslip bands.
Seriesof four selectedareadiffractionpatterns(SADP)showingstreaking

associatedwith theextremelyfineor-phase(hcp)in the13(bcc)matrix.(a)B -

(110)6, (b)B - (111)13,(c) B - (120)1_and(d) B - (331)1_.Thedirectionsof

thestreaksin eachSADPweredeterminedto bein agreementwith theco-

phasebeingdistributedin rowsalongthe<111>1311<0001>o_direction. The

pointsa, b, andc in (c) correspondto (1011),(2020)and(0001)reflections

of thec0-phase.

Opticalmicrographsof theedgecross-sectionof a90-degreecomposite,

strainedto approximately1.6percent(StageIII); as-polishedsample,and

theloadingaxisisvertical.Thehighermagnificationmicrograph(b)

illustratesbothdebondingandcrackingof thereactionzone.

Longitudinalsectionof a90-degreecompositedeformedintoStageIII.

Debondingandcrackingat thefiber-matrixinterfaceis shownby anarrow.
Etchedmicrostructureof a90-degreespecimen,loadedinto StageIII. Two

typesof slipbandactivityareindicatedbyregionsA andB. Final failureof
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Figure 29.

Figure 30.

Figure 31.
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thecompositeoccurredbycrackinitiationandfailurealongtheintenseshear
bands.

Opticalphotomicrographof a90-degreespecimen,unloadedfrom aswain

of 0.5percent(StageI13.Theslip bands(whitelines)aremostlyassociated

with reaction-zonecracks;the latter,althoughfaint in thisfigure,are

indicatedby arrows.Loadingaxisis vertical.

Surfacereplicaof a90-degreespecimenstrainedto 0.3percent(the

beginningpartof StageII); replicatakenatfull load. Theregionindicated

by arrowcorrespondsto theacetatetapeenteringinto thedebondedfiber-

matrixinterface.Theloadingaxisis vertical.

Replicaof thesameregionasFigure26,afterthe loadhadbeenreducedto

zero.Thereisnoacetatetapeprotruding,indicatingthatthefiber-matrix

separationhaslargelycloseduponunloading.

Comparisonof modelpredictionswithexperimentaldatafor the0-degreeTi

15-3/SCS6composite.
Comparisonof modelpredictionswith experimentaldatafor the90-degree

Ti 15-3/SCS6composite.

Comparison of model predictions with experimental data for the 90-degree

Ti 15-3/SCS6 composite.

Plot showing effects of temperature on the stress versus longitudinal strain

response for the 90-degree composite.

Deformation sequence for the 0-degree composite, based on current

observations.

Deformation sequence for the 90-degree composite, based on current

observations.
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TABLE 1. Special Characteristics of Plasticity and Damage

Characteristic Plasticity Damage

Specimen compliance

Strain offset at zero

load

Poisson's ratio

Cracks and debonding

Changes in dislocation

density and

configuration in

the bulk

Unchanged with plasticity

Positive strain offset

Increases in going from the

elastic into the plastic regime

of deformation

No

Yes

Increases with damage

Zero strain offset

Decreases in going from the

elastic into the damage regime

of deformation

Yes

No
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B a
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b

B C
D

50 ffm

Figure 11. (a) Longitudinal, and, (b) transverse cross sections of the as-received Ti 15-
3/SCS6 composite; as-polished sample. A,B, and C correspond to the

fiber, reaction-zone, and matrix, respectively.
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Figure 12. (a) Longitudinal, and, (b) transverse cross sections of the as-received Ti 15-
3/SCS6 composite; polished and etched sample. The arrow shows a grain-
boundary.
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Figure 13. Etched microstructure of the surface of a 0-degree Ti 15-3/SCS6 composite,

unloaded from a total strain of 0.9 percent. The slip bands (indicated by
arrows) may be seen emanating from grain boundaries.
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r

Figure 14. Etched microstructures of a 0-degree Ti 15-3/SCS6 composite, unloaded
from a total strain of 0.9 percent. The specimen has been polished down to
the first set of fibers. Large slip band activity confirms plasticity in the
MMC.
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(a) Higher magnification optical micrograph, corresponding to Figure 14,
showing slip bands associated with reaction-zone cracks; (b) SEM
micrograph of another region, showing slip bands emanating from the
reaction-zone/matrix interface.
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1O0 #m
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Figure 16. Longitudinal cross section of a 0-degree specimen, showing fiber and Mo-
ribbon fractures associated with failure of the composite. The region next to
the fracture surface is shown in (a). The region in (b) is approximately 5
mm from the fracture surface, showing cracking of fibers and Mo-ribbon at
that location.
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Figure 17. TEM micrograph of the as-received material, showing built-in dislocation
structures.

Figure 18. TEM micrograph of the as-received material, showing built-in dislocation
structures.
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Figure 19. TEM micrographs of the deformed 0-Degree Ti 15-3/SCS6 composite.
Images taken around the [011] zone axis. (a) Bright field, and (b) Dark

field.
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Figure 19. TEM micrographs of the deformed 0-degree Ti 15-3/SCS6 composite.

Images taken around the [011] zone axis. (a) Bright field, and (b) Dark
field.
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Figure 20. TEM micrographs of the deformed 0-Degree Ti 15-3/SCS6 composite,
showing intersecting slip bands.
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Figure 21. Series of four selected area diffraction patterns (SADP) showing streaking associated with the

extremely fine 0_-phase (hcp) in the [3 (bcc) matrix. (a) B- (110)13, (b) B - (111)13, (c) B -

(120)t 3 and (d) B - (331)[_. The directions of the streaks in each SADP were determined to be

in agreement with the o-phase being distributed in rows along the <111>1311<0001 >odirection.

The points a, b, and c in (c) correspond ('T011), (2"020) and (0001) reflections of the c0-phase.
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a
b
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Figure 22. Optical micro-photographs of the edge cross-section of a 90-degree
composite, strained to approximately 1.6 percent (Stage HI); as-polished
sample, and the loading axis is vertical. The higher magnification
micrograph (b) illustrates both debonding and cracking of the reaction zone.

BLACK AND WHITE PHOTOGR,_,PH



56

50_m

Figure 23. Longitudinal section of a 90-degree composite deformed into Stage III.
Debonding and cracking at the fiber-matrix interface is shown by an arrow.
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Figure 24. Etched microstructure of a 90-degree specimen, loaded into Stage IlI. Slip
bands are indicated by arrows. Final failure of the composite occurred by
crack initiation and failure along the intense shear bands.
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Figure 25. Optical photomicrograph of a 90-degree specimen, unloaded from a strain
of 0.5 percent (Stage II). The slip bands (white lines) are mostly associated
;,vith reaction-zone cracks; the latter, although faint in ntis figure, are

indicated by arrows.
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Figure 26. Surface replica of a 90-degree specimen strained to 0.5 percent (Stage 17); replica taken
at full load. The region indicated by arrow corresponds to the acetate tape entering into
the debonded fiber-matrix interface. The loading axis is vertical.

Figure 27. Replica of the same region as Figure 26, after the load had been reduced to zero.
There is no acetate tape protruding, indicating that the fiber-matrix separation has

largely closed upon unloading.
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